Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anwar Usman, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a }}{ }^{*}$ Suchada Chantrapromma, ${ }^{\text {a }} \boldsymbol{}$ + Yan Zhang ${ }^{\text {b }}$ and Jian-Hua Xu ${ }^{\text {b }}$
${ }^{\text {ax }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

+ Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.055$
$w R$ factor $=0.117$
Data-to-parameter ratio $=6.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

10-Acetonyl-10-hydroxyphenanthren-9(10H)-one

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$, the central ring is not planar and tends towards an envelope conformation. The hydroxy and oxopropyl groups facilitate one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions, which link the molecules into molecular chains parallel to the c direction. The packing is also stabilized by another $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, which interconnects the chains into a three-dimensional network.

Comment

Photoinduced cycloaddition reactions of phenanthrenequinone with several oxazole derivatives, which are of interest in heterocyclic chemistry, have been investigated (Zhang \& $\mathrm{Xu}, 2002$). The crystal structures of dioxino[2,3-d]oxazole derivatives resulting from such photo-induced reactions have been reported in our previous study (Usman et al., 2002). In order to extend the photo-induced reactions of phenanthrenequinone, we have prepared and structurally analysed the title compound, (I), the crystal structure of which is presented here.

(I)

The bond lengths and angles in (I) (Fig. 1) are within normal ranges (Allen et al., 1987). The values within the phenanthrene moiety ($\mathrm{C} 1-\mathrm{C} 14$) agree with the corresponding values in the related structure (Usman et al., 2002), except for the bond lengths and angles around atoms C 1 and C 2 . The ring containing these two atoms is distorted from planarity towards an envelope conformation, with atom C 1 displaced by 0.483 (4) \AA from the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 14$ plane. The ketone atom O 2 , attached at C 2 , deviates in the opposite direction from the plane by 0.403 (3) \AA, although C2 is a Csp ${ }^{2}$ atom. This is related to the configuration of atom $C 2$, which is attached to the $s p^{3}$ atom C1 (average bond angle subtended at C 1 is 109.5°). The mean plane of the ring involving atoms C 1 and C 2 makes dihedral angles of 8.7 (2) and $11.0(2)^{\circ}$, respectively, with phenyl rings $\mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{C} 9-\mathrm{C} 14$, while the two phenyl rings are twisted by an angle of 14.3 (2) ${ }^{\circ}$ with respect to each other.

The oxopropyl moiety ($\mathrm{O} 3 / \mathrm{C} 15 / \mathrm{C} 16 / \mathrm{C} 17$) is in a plane which makes a dihedral angle of $25.6(3)^{\circ}$ with the mean plane of the ring involving atoms C 1 and C 2 .

The molecules are packed into infinite chains along the c direction (Fig. 2) by $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O} 2^{\mathrm{ii}}$

Received 19 July 2002
Accepted 25 July 2002
Online 31 July 2002

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
interactions [symmetry codes: (i) $\frac{1}{2}-x, y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, y$, $\frac{1}{2}+z$], involving the oxopropyl and hydoxy substituents (see Table 2). The extended notation for a molecular chain comprising these rings is $C(5)\left[R_{2}^{2}(9)\right]$ (Bernstein et al., 1995). The molecular chains are interconnected by a $\mathrm{C} 17-$ $\mathrm{H} 17 B \cdots \mathrm{O} 3^{\text {iii }}$ interaction [symmetry code: (iii) $x-\frac{1}{2}, 1-y, z$] into a three-dimensional network. The packing is stabilized by these interactions along with the dipole-dipole and van der Waals interactions.

Experimental

A solution of 9,10 -phenanthrenedione $(0.05 M)$ in the presence of an excess of 2-methyl-4-phenyloxazole in benzene solution was irradiated with light having a wavelength longer than 400 nm . After completion of reaction, the solvent was removed in vacuo and the residue was separated by column chromatography on a silica gel to afford the title compound. Single crystals suitable for X-ray diffraction study were obtained by slow evaporation of an acetone-petroleum ether solution $(1: 5 \mathrm{v} / \mathrm{v})$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$
$M_{r}=266.28$
Orthorhombic, Pca_{1}
$a=9.2240$ (8) \AA
$b=15.2406(9) \AA$
$c=9.2898(8) \AA$
$V=1305.9(2) \AA^{3}$
$Z=4$
$D_{x}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD area-

 detector diffractometer ω scansAbsorption correction: none
5952 measured reflections
1226 independent reflections

Mo $K \alpha$ radiation
Cell parameters from 3007 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Needle, colorless
$0.50 \times 0.18 \times 0.10 \mathrm{~mm}$

980 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.120$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 9$
$k=-18 \rightarrow 16$
$l=-11 \rightarrow 10$

Figure 2
Packing diagram of the title compound viewed down the a axis, showing the infinite molecular chains. The dashed lines denote the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.117$
$S=0.99$
1226 reflections
183 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.402(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.526(5)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.217(5)$	$\mathrm{C} 1-\mathrm{C} 15$	$1.556(6)$
$\mathrm{C} 1-\mathrm{C} 14$	$1.519(5)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 14$	$109.3(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 15$	$110.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.5(3)$	$\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 15$	$107.4(3)$
$\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 2$	$110.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 15$	$108.0(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.18	$2.813(4)$	135
$\mathrm{C}^{\mathrm{i}} 5-\mathrm{H} 15 B \cdots \mathrm{O}^{\text {ii }}$	0.97	2.55	$3.444(6)$	153
$\mathrm{C}^{\text {(17-H17 }} \cdots \mathrm{O}^{\text {iii }}$	0.96	2.57	$3.446(6)$	151
Symme				

Symmetry codes: (i) $\frac{1}{2}-x, y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, y, \frac{1}{2}+z$; (iii) $x-\frac{1}{2}, 1-y, z$.
The H atoms were placed geometrically and treated as riding on their parent C and O atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{O}-\mathrm{H}=$ $0.82 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of
significant anomalous dispersion effects, 1065 Friedel pairs were merged and the absolute structure can not be determined from the crystallographic experiment. In the refinements, the 2θ maximum was limited to 50°, due to a large fraction of weak data at higher angles.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/

PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SADABS and SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. \& Xu, J.-H. (2002). Acta Cryst. C58, o477-o479.

Zhang, Y. \& Xu, J.-H. (2002). In preparation.

